Mostrando postagens com marcador Antipartículas. Mostrar todas as postagens

Campos e Partículas - A Nossa Visão Moderna do Universo

No texto passado falamos sobre simetrias nas leis da física. Nesse texto de hoje vamos tratar de uma leve introdução da relação entre partículas e campos do ponto de vista da Teoria Quântica de Campos (TQC). No próximo texto iremos relacionar os dois assuntos tratando da quebra espontânea de simetria e, nesse contexto, falaremos sobre dois mecanismo muito importantes, o de Goldstone e o de Higgs. Vou deixar os planos a curto prazo em formato de lista para que você possa acompanhar melhor:

1 – Simetrias
2 – Partículas e Campos
3 – Quebra Espontânea de Simetria.
4 – O que são Partículas Elementares?
5 – O que é Supersimetria?

Vamos ao que interessa.

No final do século XIX, o Lorde Kelvin¹ disse que o céu estava limpo, exceto por duas pequenas nuvens negras, se referindo a como estava a física da época. O problema é que essas duas pequenas nuvens negras eram nada mais do que a mecânica quântica e a teoria da relatividade. Em pouco tempo, essas duas nuvens negras cresceram e deram origem a uma enorme tempestade.

É justamente da junção de parte dessas nuvens que vamos falar aqui, mas não vou me focar em descrições de títulos, e sim dar explicações e depois atribuir títulos a elas.

Uma coisa que é comum de se ler por aí é sobre a incompatibilidade entre a mecânica quântica e a teoria relatividade. Mas isso não é totalmente verdade, existem vários pontos em que a mecânica quântica e a relatividade se encaixam muito bem e é disso que se trata a TQC². Desde a formulação de teorias modernas da física, os campos se fizeram presente, como na teoria do eletromagnetismo de Maxwell, por exemplo. Então veio Einstein, Minkowski, Lorentz, Poincaré e deram a física clássica uma nova abordagem, a abordagem relativística, que deu formas diferentes a nossa visão dos campos. A essa nova visão sobre os campos nós chamamos hoje de Teoria Clássica de Campos. Com a inserção da mecânica quântica nesse contexto, ou seja, com a quantização desses campos, obtivemos uma teoria bem abrangente e que mete o bedelho desde a cosmologia até a física da matéria condensada, que é a Teoria Quântica de Campos.



Mas qual a graça da TQC?

Essa teoria foi postulada pela primeira vez no final de 1920 e desenvolvida ao longo das décadas seguintes. E uma das principais coisas que a TQC fez, foi mudar nossa visão de mundo. Pois essa teoria nos fez ver um universo todo permeado por campos, que dão origem as partículas que formam nosso universo, colocando os campos em uma posição fundamental para compreendermos a natureza. Mas para ficar mais fácil nossa compreensão, para começar, vamos pensar apenas em elétrons.

Em todo o universo, há um campo chamado de “campo de elétrons”, que é um campo fermiônico que citamos no texto sobre Matéria e Energia. Um elétron propriamente dito não é um campo, mas sim uma vibração localizada em um campo. Na verdade, cada elétron no universo é uma vibração localizada em um único campo.

Os elétrons não são as únicas partículas que consistem em vibrações localizadas de um campo, na verdade todas as partículas são. Por exemplo, há um campo de fótons, um campo de quark up, um campo de glúons, um campo de múon, ou seja, há um campo para cada partícula conhecida. E, para todos eles, uma partícula é apenas uma vibração localizada do campo.

Esse é o caso também do bóson de Higgs. O campo de Higgs interage com as partículas fornecendo a sua massa, mas é difícil observar este campo diretamente. Por esse motivo temos que fornecer energia para esse campo, através de colisões de partículas, para lhe causar vibrações que são detectadas como partículas, no caso, o bóson de Higgs. Então, observar uma partícula em acelerador, por exemplo, é nada mais do criar e observar vibrações em determinados campos.

Essa idéia dá uma visão completamente diferente de como o mundo subatômico funciona. Pois existe uma grande variedade de diferentes campos permeando todos os lugares e o que nós pensamos que é uma partícula, na realidade é simplesmente uma vibração do campo ao qual ela é associada.

Isto tem consequências importantes sobre a forma como pensamos sobre como as partículas interagem. Por exemplo, considere um processo simples, onde dois elétrons são disparados um contra o outro e são espalhados. Na visão semi-clássica de dispersão, um elétron emite um fóton e depois recua. O fóton viaja para o outro elétron, que o “recebe” e também recua. Isto é como ter duas pessoas em cima de dois skates e um deles joga uma bola para o outro: o skate da pessoa que arremessa a bola se move para trás em resposta à massa da bola, assim como o skate da pessoa que apanha a bola.


Na TQC, uma vibração no campo do elétron provoca uma vibração no campo dos fótons. A vibração no campo do fóton transporta energia e momento para outra vibração no campo do elétron e é absorvida.

No famoso processo em que um fóton se converte em um elétron e um anti-elétron, as vibrações do campo dos fótons são transferidas para o campo do elétron e dois conjuntos de vibrações são configurados – um dos quais está de acordo com a vibração do elétron e o outro de acordo com a vibração do anti-elétron³.

Essa abordagem de campos e vibrações explica como o universo funciona em um nível profundo e fundamental. Estes campos abrangem todo o espaço. Alguns campos podem interagir com outros campos, enquanto que outros podem parecer inertes. O campo fóton pode interagir com os campos de partículas carregadas, mas não pode interagir com os campos dos glúons ou dos neutrinos. Por outro lado, um fóton pode interagir indiretamente com o campo do glúon, em primeiro lugar, fazendo vibrações nos quarks que, em seguida, fazem os glúons vibrar.

Campos quânticos são realmente uma forma bem diferente de ver o universo. Tudo, e eu quero dizer TUDO mesmo, é apenas uma consequência da vibração de muitos campos infinitamente grandes. O universo inteiro é feito por esses campos e essa coisa dá um grande nó na nossa cabeça.


No próximo texto, nós vamos tratar de como essas partículas “aparecem” na quebra espontânea de simetria nesse campos. Iremos falar um pouco sobre o mecanismo de Goldstone, em que partículas perdem sua massa e o mecanismo de Higgs, no qual partículas ganham massa. Caso você queira acompanhar bem o próximo texto aconselho que você dê uma estudada em “energia potencial” pode ser por material de ensino médio, ou por esse texto.


1 - Em The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Series 6, volume 2, page 1 (1901) "Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light."

2 - Note que o ponto problemático da junção entre Mecânica Quântica e Relatividade se dá no campo gravitacional, quando tentamos quantizar esse campos surgem infinitos na nossa teoria que estragam a nossa brincadeira. 

3 - É importante frisar que o campo do elétron é o mesmo do anti-elétron.


Veja mais:

- Lectures on Physics - Feynman (o física em 12 lições também serve)

Matéria e Energia - Partículas e Campos (Pt 2)

Aqui está nosso segundo texto da série Matéria e Energia. Como eu sou péssimo com planejamentos, esse texto será sobre campos e partículas que corresponde aos tópicos 3 e 6 do combinado e no próximo abordarei os tópicos 4 e 5.

Como vimos anteriormente, não é uma tarefa fácil definir em palavras o que é energia, já a definição de matéria se mostra ainda mais difícil. E nessa nossa tentativa de definir coisas bem difíceis daremos mais um passo.
Nossa concepção atual do mundo físico é formada por uma grande variedade de experimentos e descobertas que ocorreram entre os anos 1900 e 1970. Esse conhecimento não é nada de sobrenatural, mas leva um certo tempo para as pessoas que cresceram com uma visão arcaica virem a realidade por um novo ponto de vista, e alguns de fato nunca irão ver. Também leva um tempo para uma versão mais recente de uma visão de mundo a entrar em foco nítido para a própria ciência.
Hoje, se alguém quiser falar sobre o mundo no contexto do nosso ponto de vista moderno, pode-se falar em primeiro lugar dos "campos e as suas partículas”. Os campos são os ingredientes básicos do universo¹, hoje em dia esse é o nosso paradigma dominante. Vemos os campos como mais fundamental do que as partículas, porque você não pode ter uma partícula elementar sem um campo, mas você pode ter um campo sem quaisquer partículas. No entanto, acontece que todos os campos conhecidos têm uma partícula conhecida², por exemplo, o campo eletromagnético tem o fóton, o campo de Higgs tem o bóson de Higgs. De forma geral, cada campo fermiônico tem seu férmion relacionado assim como cada campo bosônico tem seu bóson.

O que "campos e partículas" têm a ver com a "matéria e energia"?
Campos não são matéria propriamente dita e partículas, como definimos antes, podem ser ou não matéria, vai depender se elas são partículas de matéria ou de força. Para te lembrar, definimos partículas de matéria, os elétrons, neutrinos, quarks,etc e partículas de força, os fótons, bósons W's, bósons Z's, etc.
Então as primeiras conexões que temos são:
Campos → Não são matéria propriamente dita.
Partículas → Podem ser ou não matéria, vai depender de suas características.
Agora vamos para a relação entre campos e partículas com a energia.
Mesmo que você saiba pouco sobre a área de partículas e campos, é um tanto intuitivo pensar que todos os campos e partículas podem ter energia. Mas eles são energia?
A resposta é não! Como definimos anteriormente a partícula pode ter energia, mas ela não é energia, da mesma forma que minha casa é da cor branca, mas ela não é a cor branca. O mesmo vale para o campo, ele pode possuir energia, mas ele não é energia, a energia é uma propriedade sua. Posso, quem sabe em um texto mais técnico no Relative Thinking, mostrar como descobrimos a energia de um campo, mas isso é assunto para outra hora.
É bem complicado falar sobre campos e sua relação com partículas, quebra de simetria, etc. Então peço que no momento se contentem com o esse link aqui, mas em um futuro próximo prometo fazer um texto sobre o assunto (me cobrem se eu esquecer).
Resumindo essa relação entre campos e partículas com energia:
Campos e Partículas → Não são energia, energia é uma propriedade deles.

Dessa forma vemos que os ingredientes mais básicos do no universo, os campos, não são energia e não são necessariamente matéria. Sim, é algo bem abstrato.

Para encerrar a segunda parte quero tentar desfazer um problema que pode ter ocorrido durante esse texto. Que é a relação “Partícula de Matéria” e “Partícula de Força”.

Dividir partículas nas duas classes “Partícula de Matéria” e “Partícula de Força” é um pouco arbitrária. Para nosso texto ela funciona bem, pois falamos que as partículas de força e suas antipartículas estão associadas com as quatro forças da natureza que conhecemos, enquanto as partículas de matéria e suas antipartículas são todas as outras partículas. E há muitas situações em que essa divisão é conveniente. Mas nós poderemos facilmente descobrir partículas que não se enquadram nesta classificação, um exemplo é o bóson de Higgs, pois ele não está relacionado a uma força, mas também não está na categoria de “matéria”.
No decorrer do texto, eu fui tentando utilizar uma divisão alternativa (mas muito diferente) e que faz mais sentido: ora eu chamava de partículas de matéria outra eu chamava de férmions, e ora eu chamava de “partícula mediadora de força” outra de bósons. Essa definição é mais abrangente e mais correta, pois abarca mais partículas, inclusive o Higgs que não faz mediação de força, mas sim de massa³.
Assim é mais conveniente dividir em:
Férmions: Partículas de matéria propriamente dita, e você pode ver uma lista delas aqui.
Bósons: São partículas que não podem ser consideradas matéria propriamente dita, e existe também uma lista delas aqui (sem o Higgs).
Essas partículas e as interações que ela mediam são organizadas e estudadas em uma teoria que chamamos de modelo padrão


Apesar da nossa definição arbitrária do primeiro texto, o que de fato temos é que todas as partículas da natureza são simplesmente partículas, algumas das quais são antipartículas de outras, e não há apenas uma única maneira de dividi-las em classes. A razão pela qual eu usei "matéria" e "força" é que isto é um pouco menos abstrato do que "férmions" e "bósons".

A diferença real entre bóson e férmions é um tanto complexa de se explicar do ponto de vista da física, pois utilizamos conceitos um tanto complexos, mas como disse, eu tentarei (assim que surgir tempo) escrever um texto abordando o assunto.

Por hoje é só pessoal. Lembrando que esses textos são nada mais que um incentivo à vocês a buscarem mais informações e também para abrir margem para novos textos dessa área. 


1 - Para alguns físicos, o mais fundamental do universo são os espinores, mas isso não desvalida em ponto algum o que falamos acima, além de ser um assunto que não cabe aqui.

2 - O campo gravitacional teria como partícula o Gráviton, porém ele é uma partícula problemática que está um pouco longe de uma confirmação experimental.

3 - Caso queira entender melhor sobre isso, leia esse texto (mas leia logo que esse blog será apagado!): E o bóson de Higgs, a quantas anda? 
segunda-feira, 29 de julho de 2013
Posted by Thiago V. M. Guimarães

Matéria e Energia - Diferenças que você precisa saber!

Você leigo, que adora ler texto sobre física na internet, sempre se depara com a relação entre matéria e energia, e recebe definições diferentes sobre como elas se relacionam. Por esse motivo resolvi escrever esse texto, que será enorme e por isso vou dividir em 3 posts abordando 2 tópicos em cada texto. A idéia é tentar dar uma definição mais precisa sobre a relação entre matéria e energia para que você pare de receber conceitos errados e possa ter um conceito mais formal para carregá-lo para a vida.
Eu vou me basear aqui no excelente post do Professor Matt Strassler que vou deixar nas referências.

Os tópicos que irei abordar são:

1 – Matéria e Energia realmente são a mesma coisa?
2 – Aniquilação de partículas não é matéria se transformando em energia.


Mãos a obra:

1 – Matéria e Energia realmente são a mesma coisa?

Uma causa dos grandes problemas com a definição da relação entre matéria e energia é que com o tempo de estudo na física você vai aprendendo a separá-las em sua cabeça e elas se tornam (e são) coisas realmente diferentes, tanto experimentalmente quanto matematicamente. Por esse motivo não perdemos muito nosso tempo tentando explicar as diferenças e similaridades em livros e textos, aí causamos isso, um monte de gente que não sabe distinguir as duas coisas, já que os textos de divulgação fazem questão de usar definições ambíguas e que mudam de texto para texto.

O mais comum de se ler por aí é que matéria e energia são a mesma coisa e isso não é verdade – É José, o documentário mentiu pra você. Matéria e energia nem sequer estão na mesma categoria, mas vamos definir as coisas com mais calma.

Primeiramente definiremos o que é matéria e fazer isso é bem complicado. Vamos começar com uma definição simples que você não terá problemas em compreender:

- A forma mais automática de se pensar em matéria é ela como sendo as coisas a nossa volta, como cadeiras, mesas, a água, o ar, a terra. Podemos estender essa definição para os átomos, e por sua vez estender ainda mais para partículas ainda menores como elétrons, múons, taus, três tipos de neutrinos, seis tipos de quarks, ou seja, todos os tipos de partículas que não são bósons – que não são mediadoras de força.



Mas quero deixar bem claro que até mesmo essa definição acima é um tanto contraditória quando consideramos a matéria escura, por exemplo, mas isso é assunto para um tópico mais adiante.

Embora a energia seja algo bem definido fisicamente e matematicamente, no dicionário ela possui mais significados que a palavra “matéria”, ou seja, temos um problema lingüístico para distinguir precisamente o que é a energia, mas vamos tentar.

Parte do que torna complicado para descrever a energia é que ela pode tomar várias formas, das quais nem todas são conceitualmente simples. Aqui estão as quatro mais comumente encontradas:

  1. O físico R.P. Feynman possuía uma forma interessante de se definir energia, mais ainda sem ser menos abstrata. Ele dizia que energia é uma quantidade que sempre se conserva, não importa o que você faça com um corpo ou um sistema de corpos, sempre conservará essa quantidade. Mesmo em sistemas com dissipação de energia podemos encontrar a quantidade perdida pelo corpo em forma de calor, som, vibração, etc.
  2. A energia pode ser “confinada” na massa de um objeto, que é o famoso E = mc², e também chamado de "energia de repouso", uma vez que é a energia que um objeto tem quando está parado.
  3. A energia está associada com o movimento de um objeto, cujo nome técnico é "energia cinética". Este tipo de energia é bastante intuitiva e nos leva a notar que os objetos mais rápidos têm mais energia do que os mais lentos e juntando com a primeira definição, um objeto de maior massa tem mais energia cinética do que um mais leve, se os dois estiverem viajando na mesma velocidade.
  4. A energia pode ser armazenada nas relações entre os objetos (energia potencial). Ele pode ser armazenado em uma mola esticada, ou na água atrás de uma represa, ou na interação gravitacional da Terra com o Sol, ou na relação entre átomos numa molécula, ou quando simplesmente levantamos uma pedra com nossas mãos. É aquele conceito simples de energia potencial que aprendemos no ensino médio.

As quatro definições acima estão longe de serem simples de se entender assim de primeira, então vá discutir com seus amigos e ler mais textos.

Mas vamos resumir tudo isso de forma BEM simplória dizendo que energia não é por si só um objeto. Por exemplo, Um átomo contém energia, mas ele não é energia propriamente. E você precisa saber que partículas se movendo por conta própria através do espaço podem ter dois tipos de energia: energia relacionada à massa e energia relacionada ao movimento.

2 – Aniquilação de partículas não é matéria se transformando em energia.

(Não é a minha intenção explicar aqui o processo de aniquilação entre partículas e suas antipartículas, mas sim analisar seus produtos. Talvez no futuro eu possa escrever ou traduzir algo sobre isso)

Talvez aqueles que estejam a pouco tempo pesquisando e lendo materiais de divulgação sobre física não tenham tido contato com o assunto. Então vou explicar com mais calma.

Quando uma partícula e sua antipartícula se encontram elas se aniquilam e, segundo muitos textos e alguns documentários por aí, o resultado dessa colisão é nada mais que simples e “pura” energia. Mas infelizmente, a afirmação não é verdadeira.


Na maior parte dos textos que falam sobre isso, a “energia pura” é referida aos fótons provindos da aniquilação entre elétrons e pósitrons. Mas o fóton também não é energia, ele contém energia! Por exemplo, minha casa possui a cor branca, mas ela não é a cor branca, ou seja, a cor branca é apenas uma propriedade da minha casa.

É totalmente corriqueiro encontrar por aí leigos que acreditam que fótons são de fato “energia pura”, mas na verdade eles são partículas, como qualquer outra provinda de oscilações em um campo correspondente¹, da mesma forma que um elétron², por exemplo. Quando um elétron e um anti-elétron (pósitron) se aniquilam, a energia dos fótons produzidos é igual à massa do par elétron-pósitron, já que a energia é conservada.



Mas podemos considerar o aniquilamento entre outras partículas, por exemplo. Quando um múon se aniquila com o antimúon, existe a mesma probabilidade de resultar em um par de fótons ou em um par elétron-pósitron. Ou seja, temos matéria se aniquilando em matéria e não em energia pura. O aniquilamento do par múon/antimuon em dois fótons ou no par elétron/pósitron representa exatamente o mesmo processo, então não precisamos fazer distinções que não existem!

Com isso acredito que tenha ficado claro que não é verdade que matéria e a antimatéria se aniquilam formando energia propriamente dita, elas se aniquilam formando outras partículas que contém energia. Ok?!


---

Espero que tenham gostado da nossa primeira parte. À medida que eu for encontrando tempo vou escrevendo mais. Lembrando que estou me baseando nos textos do professor Matt Stressler, então dê uma checada no blog dele que vocês irão achar bastante coisa legal.


1- A Teoria Quântica Campos, que é o framework de onde saíram algumas das teorias mais bem sucedidas que temos atualmente, trata as partículas como sendo oscilações em diferentes campos. Um elétron é uma oscilação em um campo fermiônico com determinadas propriedades. Já o fóton é um oscilação em um determinado campos vetorial, no caso, o campo elétrico.

2- Acho importante fazer aqui um adendo. Note que falamos que fótons são partículas assim como elétrons, mas no início definimos que elétron é matéria propriamente dita e fótons (que é um bóson) não. O que acontece é que a definição de "partícula" é mais abrangente do que a definição de matéria. Em "partículas elementares" temos duas classes que são os Férmions e os Bóson, os férmions são matéria propriamente dita, da maneira que de definimos. Por sua vez, bóson são partículas mediadoras de força e estão fora da nossa definição de matéria.


*E uma dica final dessa seção: É corriqueiro até mesmo professores passarem uma visão de que a energia é quase um substância fluída que passa de um corpo para outro, mas isso não é verdade, energia não é uma substância e nem é trocada de forma continua entre dois corpos, mas deixemos isso para um próximo texto 
quarta-feira, 24 de julho de 2013
Posted by Thiago V. M. Guimarães

Seguidores

Posts populares

Labels

- Copyright © Simetria de Gauge - Powered by Buc! - His name is Robert Paulson - Use $\LaTeX$