Archive for maio 2019

Fizemos uma teoria cosmológica unificada que descreve Inflação cósmica, matéria escura e energia escura

Olha só!!! pra você que achou que o Simetria de Gauge estava morto, sinto lhe dizer que …. você estava certo! Talvez eu traga ele de volta do mundo dos mortos… mas apenas talvez, pois a vida ficou corrida nos últimos anos.

Pois bem, cá estou de volta e dessa vez vou contar pra vocês como eu gastei 53 mil reais do seu dinheiro :) para criar um modelo cosmológico que faz barba, cabelo e bigode. Ou seja, esse texto é uma prestação de contas à você que pagou minha bolsa de doutorado e hoje paga meu salário de professor pesquisador.


Foto ilustrativa, achei isso quando pesquisei por dark matter no google...



Se tiver algum termo não explicado durante o texto, click nos textos linkados.

A cosmologia é hoje uma das áreas de pesquisa em física com maior número de grandes problemas em aberto. Por exemplo, hoje acreditamos que o Universo começou com um Big Bang quente, após esse período houve uma rápida inflação cósmica, logo após veio uma fase em que o Universo passou a ser dominado por radiação, posteriormente por matéria escura e nos dias de hoje por energia escura. Essa visão de evolução cosmológica é o padrão que temos hoje, entretanto nós não entendemos bem o Big Bang, não sabemos o que foi que causou a inflação cósmica subsequente, não sabemos o que é matéria escura, nem energia escura e menos ainda sabemos se isso tudo tem relação ou se são eventos separados.

Antes de falarmos exatamente do que nós fizemos, é importante (até pela forma que me propus a levar esse blog) deixar tudo bem explicado dentro do contexto que queremos trabalhar, então vamos falar do modelo cosmológico $\Lambda$CDM.

Modelo cosmológico que queremos descrever:


De maneira generalista, o modelo cosmológico que descreve um Universo fisicamente equivalente ao nosso é o modelo $\Lambda$CDM¹, o qual considera um Universo cuja gênesis se dá no Big Bang, seguido por um período no qual o conteúdo material existente era apenas a radiação, perdurando por cerca de 380 mil anos de sua história. Após esse período o Universo passa a ser dominado por algum tipo de matéria escura fria (o termo "fria'' se refere a ser não relativística, ou seja, baixa velocidade) e em tempos tardios passa para a fase dominada por algum tipo de energia capaz de produzir certa pressão negativa, levando a uma expansão cósmica acelerada que começa a ser vista nos dias de hoje.

Mas o que queremos dizer por expansão cósmica? Quando olhamos para as galáxias em nossa volta percebemos que no geral todas elas estão se afastando de nós a uma taxa específica. Se estivéssemos em qualquer outro lugar do Universo, também veríamos tudo se afastando de nós da mesma forma, logo todo o Universo está se expandindo... A medida desse afastamento entre tudo que observamos é chamado de fator de escala, designado por um parâmetro adimensional $a(t)$. Basicamente o estudo da evolução cosmológica é na verdade o estudo da evolução do fator de escala, o qual se comporta de forma diferente a partir do conteúdo material do Universo. Por exemplo, quando este é dominado por radiação, o fator de escala deve evoluir proporcional a $a \propto t^{1/2}$, esse período dura 380 mil anos, tendo seu final quando o Universo se torna transparente e a radiação luminosa pode vagar por aí e chegar até nós hoje, ou seja, a fase dominada por radiação era escura e não podemos observá-la diretamente. Após o período de radiação, toma lugar o período de domínio da matéria escura fria, o qual evolui proporcional a $a \propto t^{2/3}$. Na imagem abaixo eu plotei a evolução do fator de escala dessas duas fases.



Figura 1 - Universo evoluindo com $a(t) \sim t^{1/2}$ (curva azul) e posteriormente evoluindo com $a(t) \sim t^{2/3}$ (curva amarela). O tempo $t^{*}$ marca a transição entre as fases.

Depois que a fase dominada pela matéria escura começa a perder lugar, tem início a era de domínio da energia escura, que por coincidência é a era em que vivemos agora... isso é uma coincidência tão grande que em cosmologia recebe o nome de "Problema da coincidência cósmica". Ou seja, estamos tendo a sorte de ver um momento de transição de fase do Universo.

Se você quiser uma outra visão da evolução das fases do Universo, podemos analisar pelo comportamento do conteúdo material a medida que o fator de escala aumenta, ou seja, a medida que o Universo aumenta de tamanho, a densidade da matéria/energia em seu interior deve cair, da mesma forma que uma quantidade de gás dentro de um pistão tem sua densidade diminuída quando você aumenta o volume. Dessa forma a energia da radiação deve decair com a quarta potencia do fator de escala, $a^{4}$, fazendo sua duração ser realmente pequena. Após o Universo se expandir e resfriar suficientemente, as partículas param de se movimentar em alta velocidade e se tornam matéria fria, devido a velocidade reduzida elas param de se chocar e a pressão do Universo vai para zero, nesse momento é dito que a matéria se comporta como poeira, a qual decai com o cubo do fato de escala, $a^{3}$, então essa fase é bem mais demorada que a fase de domínio da radiação.



Figura 5 - Evolução da dominação da matéria escura em relação ao fator de escala, $a = 10^{0}$ representa hoje.

Ainda, é discutido que logo após a inflação o Universo pode, na verdade, passar por uma rápida fase de domínio da matéria para então essa matéria decair em radiação, essa fase recebe o nome de Big Bang frio. Então nossa cosmologia aqui está estruturada com a seguinte ordem cronológica:

Big Bang quente $\rightarrow$ Inflação cósmica $\rightarrow$ Big Bang frio (?) $\rightarrow$ Era da radiação $\rightarrow$ Era da matéria (escura) $\rightarrow$ Era da energia escura. 
 
Restam duas coisas agora a se falar, a primeira é "como sabemos que a era depois da radiação é dominada pela matéria escura ?" e "o que pode ser a energia escura?". A resposta para a primeira pergunta é puramente observacional; quando observamos a rotação de galáxias e movimento de galáxias em cluster, vemos que esses objetos precisam ter muito mais massa do que é medido a partir da matéria visível (estrelas, gás, poeira), então é necessário existir algum tipo de matéria que não interaja com a luz, mas interaja gravitacionalmente com a matéria ordinária, por esse motivo ela recebe o nome de matéria escura. A resposta para a segunda pergunta é "não sabemos", sim não sabemos o que é energia escura e nossos modelos para tentar descrevê-la são problemáticos.

Embora o modelo $\Lambda$CDM seja muito bom, faça ótimas predições e explique muita coisa, ele também sofre com alguns problemas, dentre os quais podemos citar: problema da planura, problema do horizonte e problema das relíquias, não discutirei sobre esses problemas, pois já discutimos isso e muito mais nesse texto aqui

Esses problemas encontram uma solução interessante em um modelo chamado chamado "Inflação cósmica", no qual, logo após o Big Bang, o fator de escala passa por uma expansão muito rápida, cerca de 1 octilhão de vezes (ou mais) em uma fração infinitesimal de segundo. Isso é possível???? Sim, tanto matematicamente quanto fisicamente. Mas o que pode ter feito o Universo expandir de forma tão violenta ainda é desconhecido. Entretanto, os modelos inicialmente propostos utilizavam um campo escalar para desengatilhar a inflação, e existem dois bons motivos para isso. O primeiro motivo é que campos escalares são matematicamente mais simples de trabalhar. O segundo motivo é que nossos modelos de física de partícula (mais precisamente o modelo de Glashow-Weinberg-Salam), descreve que no início do Universo as partículas do modelo padrão não possuíam massa, até que um campo escalar chamado de campo de Higgs surge e algumas partículas ganham massa, enquanto outras (como o fóton) permanecem não massivas. Então é natural pensar que o campo de Higgs é um bom candidato a fazer a inflação, mas a realidade nunca é fácil e os modelos tradicionais de inflação com este campo já foram abandonados por apresentarem dificuldades teóricas. Por conta disso, ainda hoje é procurado um campo escalar capaz de realizar essa ultra rápida expansão do Universo.

Figura 2 - Comportamento do Universo antes, durante e logo após a inflação. Como é
possível ver, o Universo passa por um momento de expansão abrupta seguido de um crescimento proporcional a $a\propto t^{1/2}$, o qual representa uma era de domínio da radiação.

 


Qual comportamento esperamos para esse campo escalar ?


De forma geral, podemos fixar determinado comportamento para o campo escalar durante o processo de inflação cósmica. No caso, o comportamento de qualquer campo é descrito em física por sua energia cinética e potencial, o que é esperado é que o campo da inflação tenha uma energia potencial mais ou menos igual ao da Figura 4. Durante a inflação o campo escalar deve descer para a região mais baixa do potencial, chamada de vácuo, quando o campo está muito próximo dessa região a inflação acaba. Caso o campo tenha energia cinética suficiente para oscilar nesse vácuo (Figura 3), ele pode ser capaz de transferir energia para o Universo, reaquecendo-o e decaindo em demais partículas do modelo padrão, esse processo recebe o nome de "reaquecimento". Existem vários mecanismos interessantes que mostram como um campo escalar pode fazer esse reaquecimento, mas isso infelizmente não cabe nessa discussão.

Figura 3 - Comportamento do campo escalar pelo tempo. Como é possível ver, o campo desce para o vácuo do potencial depois realiza oscilações amortecidas.
 
Figura 4 - Um potencial polinomial genérico, como é possível ver, o campo escalar representados pela esfera vermelha desce para a região mais baixa do potencial, chamada de vácuo, onde realiza oscilações.


Um ponto interessante é que existem trabalhos mostrando que a matéria escura pode ser também um campo escalar (um condensado de campo escalar, na verdade) e outros trabalhos mostram que a energia escura pode ter duas fontes, ou ela seria também a ação de um campo escalar, ou ela seria algum tipo de energia de ponto zero. O primeiro modelo de energia escura é chamado de "quintessência" e é bastante estudado, pois veja que legal, se a inflação cósmica pode ser feita por um campo escalar, a matéria escura pode ser um campo escalar e a energia escura também pode ser a manifestação de um campo escalar, é possível construir um modelo unificado de cosmologia com um campo escalar guiando praticamente toda a dinâmica do Universo, ISSO É FANTÁSTICO! Mas e o modelo de "energia de ponto zero" ? Esses modelos são também muito interessantes e entenda "energia de ponto de zero" como "em algum momento sobra uma energia potencial de algum processo físico que é capaz de acelerar o Universo nos dias de hoje". Embora essas duas saídas explicar a energia escura sejam importantes para a cosmologia, ambas possuem diversos problemas teóricos que não cabem nessa discussão.

Legal, mas se o modelo com campo escalar funciona bem, porque precisamos construir outro?

Na verdade ele não funciona tão bem assim, primeiro que o único campo escalar fundamental conhecido é o Higgs, ou seja, se não for o Higgs quem está fazendo tudo isso qual campo escalar seria o responsável? Não fazemos ideia! Além disso, modelos inflacionários que conseguem dar um jeito (bem legal, a propósito) de usar o Higgs para fazer inflação não levam a cenários unificados, pois este campo não parece fazer matéria e energia escura de maneira tão consistente.


O modelo que propusemos

    
OKKKK, finalmente entendido o contexto vamos à pesquisa. Num belo dia eu resolvi que queria me aventurar na cosmologia, parecia legal e promissor, então conversei com meu ex orientador de doutorado e começamos a ver aplicações de física de partículas e campos em cosmologia. De início minha intenção era ver se um suposto campo escalar recém "descoberto" pelo LHC, o excesso do 750 GeV, era capaz de realizar inflação cósmica. Porém logo que comecei a organizar os estudos eu recebi a notícia de que a existência desse campo não seria confirmada, pois o que foi observado no LHC era na verdade um problema de medição apenas, não existia nada lá… tristezas a parte segue a vida…

Sem ter ideia do que fazer, resolvi só ver, sem muita empolgação, se um tipo novo de espinor, chamado de “espinor com dimensão de massa um” (Mass-dimension-one, MDO), seria capaz de realizar inflação cósmica. Esse espinor é algo muito interessante e cabe falar um pouco dele aqui. Primeiramente espinores são caras interessantes, pois como Cartan dizia, eles são os objetos mais fundamentais da natureza, uma vez que nascem da projeção de pontos do espaço-tempo². Outro ponto interessante é que eles surgem de um generalização simples, por exemplo: O Universo trabalha sobre um tipo de simetria chamada de CPT, que são “simetria de conjugação de carga” (C), simetria de paridade (P) e simetria temporal (T). A simetria P diz que se eu espelhar (trocar os sinais das coordenadas espaciais) uma partícula as leis da física para ela continuam sendo as mesmas, o mesmo vale para T, mas nesse é o tempo quem troca de sinal. Por último, a simetria C diz que se você mudar o sinal da carga de uma partícula, ou seja transformar a partícula em sua antipartícula, as leis da física também continuam a mesmas.

Um ponto fundamental é que espinores de Dirac (como o elétron e pósitron) surgem do operador Paridade³, então cabe a pergunta, "quem nasce do operador C ?". Quem nasce desse operador é um cara muito estranho, é um espinor que possui spin de férmion (1/2) e característica de massa de bóson, é um cara híbrido, um férmion com traços bosônicos. O melhor, é que como ele nasce de C, ele não pode carregar carga elétrica, ou seja, ele é naturalmente escuro (não interage com campos eletromagnéticos).  Uma última coisa muito legal do MDO é que seu comportamento cosmológico pode ser visto como um campo escalar efetivo, embora tenha spin de férmion... esse negócio é muito, muito, muito bizarro. 

Foi exatamente esse cara que nasce de C que resolvemos utilizar para criar um modelo de inflação cósmica (vou discutir melhor mais abaixo). Um outro ponto interessante, geralmente abandonado nos modelos usuais de “Cosmologia quântica”, é que em um momento que o Universo era dominado por uma alta concentração de energia, não apenas a curvatura do espaço-tempo deveria ser levada em consideração, mas também sua torção. Porém, os modelos tradicionais de inflação cósmica utilizam campos escalares e esses não interagem com torção do espaço-tempo. Então fazer um modelo espinorial nos permitira utilizar um campo escalar efetivo com a torção do espaço-tempo para inflacionar o Universo. 


Se você não é um físico que trabalha com TRG, uma coisa pode ter passado despercebida pra você: eu estou falando sobre criar uma teoria de gravitação que leve em consideração não apenas a massa como fonte de curvatura do espaço-tempo, mas também o spin da partícula. Isso é algo muito importante, pois a Teoria da Relatividade Geral é simétrica sobre transformações do grupo de Lorentz, que são translações espaciais e boosts, ou seja, não tem rotação nesse grupo e spin é rotação!!! Como faz pra resolver isso? Primeiro temos que considerar um grupo de simetria maior, chamado grupo de Poicanrè, o qual abarca translação, boosts e rotações⁴. É perfeitamente possível fazer isso e construir uma teoria mais ampla que a Relatividade Geral, chamada de Teoria de Gravitação de Einstein-Cartan-Sciama-Kibble. Essa teoria é uma generalização da TRG e existe uma motivação física muito grande para se construir essa generalização; em física de partículas nós mostramos que uma partícula é caracterizada por sua massa e spin ( que são dois valores do operador de Casimir), então é natural se pensar em uma teoria de gravitação que leve tanto a massa quanto spin como fonte de curvatura do espaço-tempo e é nesse framework que nosso modelo é construído.

Com nosso arcabouço teórico construído é hora dos resultados. First-things-first, começamos por entender o comportamento do campo MDO durante a inflação, que deveria descer para o fundo do vácuo do potencial enquanto o fator de escala do Universo cresce de forma quase exponencial (Figura 6), o que foi feito belamente. Além disso, para nossa felicidade, após o fim da inflação o campo MDO passa a oscilar, indicando que o campo está transferindo energia térmica para o Universo e reaquecendo-o, é nesse momento que as demais partículas do modelo padrão devem ser produzidas. Veja a Figura 7.

Figura 6 - Campo MDO fazendo o fator de escala crescer de forma quase exponencial.

Figura 7 - Campo MDO descendo até o vácuo do potência, note que ele oscila de maneira amortecida ao final da inflação.

Esses dados já são por si só interessantes, pois nosso modelo descreveu corretamente duas fases subsequentes do Universo. Resolvemos então verificar mais afundo e detalhadamente como era esse comportamento, o que nos fez descobrir algo importante: após a inflação cósmica e antes do reaquecimento nosso modelo levava a época de “Big Bang frio” (Figura 8) e depois decaia em radiação. Levar naturalmente a essas fases é algo bastante novo para um modelo cosmológico e isso é indicação forte de que o MDO é um excelente candidato para fazer inflação cósmica e talvez até descrever as fases seguintes de domínio da matéria e energia escura. Mas nem tudo são flores, fazer um mecanismo de reaquecimento consistente para este campo não é uma tarefa fácil e estamos tentando entender isso melhor no momento, mas já sabemos duas coisas, a primeira é que o reaquecimento pode ser feito através do acoplamento do MDO com o campo de Higgs, o qual receberia energia do nosso campo espinorial e depois transferiria para o Universo. A segunda é um possível acoplamento bem fraco do nosso campo com campos eletromagnéticos, dessa forma o MDO transferiria sua energia para fótons os quais decairiam nas demais partículas do modelo padrão. Esperamos que durante essa fase um desses dois mecanismos seja dominante, mas precisamos estudar isso mais afundo.

Figura 8 - A curva preta mostra o comportamento do fator de escala logo após a inflação, em vermelho traçamos uma curva $t^{2/3}$ para servir de comparação. Como é claro de ver, o comportamento do fator de escala é proporcional a $t^{2/3}$, caracterizando um Universo dominado por matéria logo antes de decair em uma fase de domínio da radiação.


Depois que nosso modelo fez muito bem as 3 eras iniciais do Universo, resolvemos acoplar o MDO com matéria bariônica (matéria conhecida), já que ele deve ficar livre por aí após o período de radiação. Para nosso espanto, o modelo mostrou que após a era da radiação, o MDO naturalmente apareceu acoplado gravitacionalmente com a matéria bariônica, isso significa que ele surgiu de forma espontânea como matéria escura. Outro aspecto fundamental é que um restinho de energia potencial do campo levou o Universo a possuir uma pressão negativa, a qual é interpretada como energia escura. Na imagem abaixo você pode ver a densidade de energia do Universo (Figura 9) e a pressão (Figura 10), na primeira equação existe a contribuição da matéria escura e uma densidade de energia associada ao valor de vácuo do potencial, ali chamada de $V_{2}(\varphi_{c})$, a qual representa uma constante cosmológica/energia escura.


Figura 9 - Densidade de energia do campo MDO, no primeiro termo $\phi_{c}$ representa o campo MDO e $\rho_{b}$ a densidade de energia da matéria bariônica, ou seja, o nosso espinor está gravitacionalmente acoplado a matéria ordinária, esse é um excelente comportamento para a matéria escura. O segundo termo é uma energia associado ao valor de mínimo da energia potencial do campo MDO, que atua como pressão negativa, ou seja, expandindo. 


$p_{\varphi}=-\left(1 + \frac{\kappa^{2}\varphi_{c}^{2}}{8} \right)V(\varphi_{c}).$
Figura 10 - Pressão do campo MDO, como é fácil perceber, ela é negativa, exatamente como a energia escura deve ser. 

O que eu estamos dizendo até aqui é: este é um modelo unificado que descreve inflação cósmica, Big Bang frio, reaquecimento, matéria escura e energia escura. Uma parte muito importante a se destacar é que quando trabalhamos com campos escalares para fazer a inflação cósmica, basicamente não temos uma motivação física para expandir o Universo tão rapidamente, o campo escalar faz inflação porque sim… quando inserimos um espinor é necessário levar em consideração o princípio da exclusão de Pauli, que diz que dois férmions idênticos não podem ocupar o mesmo estado de energia. Então veja só, eu tenho um Universo muito pequeno que surgiu logo depois do Big Bang, nessa ocasião os espinores MDO estão tentando descer para o vácuo do potencial, mas o princípio de exclusão não permite que todas as partículas do campo MDO atinjam o mesmo valor de energia, então aparece uma pressão quântica chamada de “pressão de degenerescência”, sim aquela mesma pressão que está por trás da formação de buracos negros e estrelas de nêutrons (como discutimos aqui). Essa pressão vai expandir o Universo abruptamente para assim ser possível acomodar os espinores em faixas de energia muito próximas do estado fundamental, com isso temos uma excelente motivação física para explicar porque o Universo se expande.

O papel aceita tudo…. Mas qual a consistência desse modelo? 


Claramente, para um modelo físico ser factível ele precisa estar de acordo com dados experimentais/observacionais, portanto é necessário conectar nossos dados com os dados obtidos por sondas como a Planck. No caso o modelo levou a uma densidade de matéria correta para o que é observado hoje (Figura 11), além disso o fator de escala cresce exatamente como deveria para as diferentes épocas do Universo e atinge valor em bom acordo com o que é medido na atualidade, como você pode ver na Figura 12. Além disso o comportamento de $a$ coincide com perfeição com os dados de Supernovas do tipo 1A (Figura 13) para a energia escura.

Figura 11 - Durante a inflação a densidade de energia é aquele patamar constante, como é esperado em modelo inflacionários, depois disso é ela decai até $10^{-28}g/cm^{3}$, o mensurado hoje é uma densidade da ordem de  $10^{-27}g/cm^{3}$, entretanto esse gráfico foi plotado somando com o espinor MDO, sem a contribuição da matéria bariônica.


Figura 12 - Aqui vemos o fator de escala chegando a um valor muito coerente com o observado hoje. Ok, se você trabalha com cosmologia, vai reclamar que este gráfico deveria chegar em $10^{0}$, mas plotamos o gráfico com a escala ao contrário e preguiça de arrumar foi grande.

 
Figura 13 - Em azul são dados de Supernova do tipo 1A, enquanto que a curva em vermelho  representa a evolução do fator de escala dominado pelo MDO atuando como energia escura.

Por último, um dos pontos centrais da concordância entre modelos teóricos e os dados observacionais é o que chamamos de “teoria de perturbação cosmológica”, quando construímos uma teoria de perturbação para nosso campo, ela deve descrever a espectro de potência da radiação cósmica de fundo. Nesse exato momento eu estou fazendo essa parte da pesquisa mais detalhadamente, porém já fiz uma versão simplificada da perturbação e obtive os resultados esperados, ou seja, o modelo concorda com os dados observados na radiação cósmica de fundo observada hoje, o que estou fazendo agora é tentando achar uma forma de ver se a torção do espaço-tempo pode ter deixado alguma marca na radiação cósmica de fundo.

Mas nem tudo são flores....


Como você sabe, não existe teoria/modelo científico perfeito, pois é assim que a ciência funciona. No nosso caso também temos uns problemas a serem entendidos. O primeiro problema é referente ao mecanismo de reaquecimento, como foi falado, é necessário desenvolver um mecanismo mais consistente e entender um pouco melhor o acoplamento do campo MDO com o campo eletromagnético no regime de energia logo após a inflação. Outro ponto diz respeito a massa do espinor, pois não conseguimos fixar um valor preciso para ela, mas sim um range bem grande de massa que vai de 0 até $2.4\times 10^{10}GeV$. Por último eu estou cada vez mais convencido que fazer uma teoria de perturbação sobre o campo espinorial como é feita da forma tradicional está longe da realidade física do que é o espinor, então talvez seja necessário pensar um pouco mais sobre isso.


Esse trabalho nos rendeu até o momento 2 artigos, o primeiro dele foi publicado no maior periódico de cosmologia e astrofísica do mundo, o Journal of Cosmology and Astroparticle Physics, enquanto que o segundo artigo está em via de publicação no European Physical Journal, e nesse momento estou escrevendo um terceiro artigo sobre as perturbações no campo MDO que espero publicar em algum periódico de relevância até o final do ano.

Sem mais, é isso! Agradeço pela atenção.


1 – O  modelo recebe esse nome pois $\Lambda$ indica algum tipo de energia escura ou constante cosmológica, CDM indica a matéria escura fria (Cold Dark Matter, do inglês), ou seja, o modelo $\Lambda$CDM é um modelo cosmológico no qual a energia escura e matéria escura dominam o Universo.

2 – O mais preciso é que são as coordenadas projetivas da projeção estereográficas das coordenadas do cone de luz num espaço complexo, mas entenda como “projeções de pontos do espaço-tempo” que fica mais simples.

3 – Mais precisamente são autoespinores do operador paridade. Então o espinor MDO é autoespinor do operador conjugação de carga.
4 – Em teoria de grupos, o grupo de Lorentz é sub grupo do grupo de Poincaré.
quarta-feira, 1 de maio de 2019
Posted by Thiago V. M. Guimarães

Seguidores

Posts populares

Labels

- Copyright © Simetria de Gauge - Powered by Buc! - His name is Robert Paulson - Use $\LaTeX$