Posted by : Daniel Vieira terça-feira, 13 de outubro de 2015

O texto a seguir é de autoria de Gabriela Meyer, aluna do curso de licenciatura em Física da Universidade Católica de Brasília, e foi elaborado como parte de seu trabalho de conclusão de curso. Seu trabalho visa entre outras coisas estudar a eficácia de textos de divulgação científica como um primeiro contato a assuntos de grande complexidade em física, e o tema "gravitação quântica" foi escolhido com esse propósito.
O público-alvo é o estudante de cursos de física, com um bom conhecimento da física básica do ensino médio e já com um interesse em ciências naturais. Que por acaso também é o público-alvo deste blog. Por isso decidi postar aqui.
Não houve a pretensão de ser um texto escrito por especialista do tema, e esse ponto também é material de estudo: até que ponto não-especialistas podem (ou devem) se aventurar na divulgação científica de temas complicados? Essa tentativa é bem vista?
Peço aos leitores, especialistas ou não, que comentem sobre esses pontos, se assim desejarem. Adianto que seus comentários podem eventualmente servir para o estudo.

O que é Gravitação Quântica?


Por Gabriela Meyer

A gravitação tem exercido fascínio desde os tempos mais antigos. Aristóteles por exemplo, acreditava que a força gravitacional tinha relação com o lugar natural dos objetos. Algum desses objetos possuía como lugar natural o centro da Terra, por isso eles caiam em direção a ela. Para outros objetos, como os gases, o lugar natural seria a esfera celeste, assim eles seriam atraídos para o céu ou para a lua. A velocidade para queda ou subida desses corpos era proporcional à massa do próprio objeto.

Passados alguns séculos de desenvolvimento teórico-científico a compreensão da humanidade foi ampliada através da metodologia científica de Galileu Galilei e Renè Descartes, aplicadas por Isaac Newton nos meados do século XVII. Em 1900 alguns físicos pensavam que a física já estava completa, faltando apenas alguns empecilhos. Kelvin até disse para os estudantes não se dedicassem a física, pois não havia mais nada a ser descoberto. Esses empecilhos desencadearam a crise científica do século XIX. Esses problemas foram, os resultados negativos de Michelson e Morley (medir a velocidade da Terra através do éter) e a dificuldade de explicar a propagação de energia de um corpo negro. Esses empecilhos foram o pontapé inicial para duas novas teorias do século XX, a teoria da relatividade e a teoria quântica. Essas teorias mudaram a visão que tínhamos do universo e, no caso desse texto, como os cientistas começaram a ver e a explicar a força gravitacional que era completamente diferente das teorias existentes.

Albert Einstein ao publicar a teoria da relatividade geral, em 1915, descarta a ideia de forças a distância e propõe um modelo teórico baseado na geometria do espaço-tempo para explicar a curvatura da luz e o movimento anômalo do periélio de mercúrio. Em seu trabalho Einstein afirma que os sistemas acelerados e os sistemas submetidos a campos gravitacionais são fisicamente equivalentes, conhecido como o Princípio da Equivalência. Em outras palavras a Teoria da Relatividade Geral modela a gravidade como uma curvatura no espaço-tempo afetando o movimento das massas.
Logo depois, surge a física quântica para tentar explicar em nível atômico como se daria a força gravitacional, levando em consideração que ela já explicava três das quatro forças fundamentais (eletromagnética, força fraca e força forte). Porém o que parecia ser simples se tornou um dos maiores desafios da física moderna.

Abaixo, serão apresentadas algumas razões pelas quais tanto as teorias da relatividade geral quanto da mecânica quântica necessitaram de uma nova modelagem, tendo em vista a tendência de unificação entre todos os ramos da física moderna e clássica.

Incompatibilidade entre a relatividade geral e mecânica quântica

Um problema surge em relação a ambas as teorias. Isoladamente são aplicáveis em seus contextos e trazem novos resultados, mas quando confrontadas de maneira geral entre si surgem paradoxos em suas bases fundamentais. Até a atualidade nenhum experimento científico de fato derrubou as afirmações propostas por Einstein, da limitação máxima de velocidade ser a da luz prevista em seus postulados de 1905. Já a mecânica quântica colaborou para o desenvolvimento de novos materiais que só foi possível através da explicação do comportamento atômico em suas bases de quantização de energia e momento. Os novos materiais como os semicondutores contribuíram para a evolução científico-tecnológica após 1950, confirmando o poder agregado ao modelo quântico.

Entretanto os problemas de compatibilidade surgiram com o paradoxo EPR proposto em 1935 por Einstein, Podolsky e Rosen, em que afirmavam a incapacidade de haver trocas instantâneas de informações referentes a estados quânticos justamente pela limitação da velocidade da luz.

Existem algumas maneiras de se lidar com o problema da quantização da gravidade, cada qual com seus problemas e consequências, a seguir serão apesentadas duas teorias que tentam unificar a Relatividade Geral com a mecânica quântica tornando-as compatíveis entre si.

Teoria das cordas

Quando quantizamos a gravitação da mesma forma que fazemos com os campos que geram as outras forças fundamentais, obtemos quantidades infinitas que não podemos interpretar ao certo. Este é o problema da renomarlização de uma teoria de campos. A renomarlização é uma ferramenta matemática usada para sanar os infinitos que aparecem em cálculos envolvendo esses campos quantizados. O problema é que esse artifício não pode ser utilizado em campos gravitacionais.

Antes do surgimento da Física Quântica, duas forças fundamentais da natureza eram conhecidas, a força gravitacional e a força eletromagnética. Logo após seu surgimento duas novas forças apareceram, a força nuclear forte e força nuclear fraca, que agem no núcleo do átomo. Dessas forças fundamentais três eram renormalizáveis e descritas pela física quântica, porém, como foi dito anteriormente, a força gravitacional ficava de fora dessa renomarlização.

A teoria das cordas surgiu meio que por acidente. Inicialmente essa teoria foi utilizada ao tentar explicar as interações nucleares fortes, levando em consideração que a teoria quântica de campos,  da época não a conseguia explicar de forma satisfatória.

A teoria de cordas mostrou-se ser suficiente ao tentar unificar todas as interações elementares, já que ela também levava em consideração a gravidade como sendo iguais aos demais campos de partículas. Ela pode ser explicada de uma maneira simples: “as entidades fundamentais da natureza, partículas constituintes da matéria e das interações, não são objetos pontuais, mas fazem parte de pequenas cordas vibrando no espaço-tempo” (ABDALLA, 2005, p.150).

A corda fundamental, de onde todas as partículas aparecem como modos de vibração, deve ser muito pequena, pois ela não seria observada de forma direta. O comprimento da corda seria a mesma da ordem do comprimento de Planck. Sua existência só poderia ser percebida através de experimentos que testam comprimentos pequenos, com energias muito grandes, porém com a tecnologia atual não seria possível detectar esses efeitos.

As cordas se classificam de duas maneiras: cordas fechadas, onde as extremidades estão unidas e cordas abertas, que não possuem as extremidades unidas. As cordas fechadas, por não possuem pontos extremos, estão mais livres que as cordas abertas para se locomoverem no espaço.
Na teoria das cordas as partículas são interpretadas como modos de vibração de cordas unidimensionais, e para que essa teoria seja válida, o universo deveria deixar de ser composto por quatro dimensões (comprimento, largura, altura, e tempo e passar a ser composto por 10 dimensões que interagiriam entre si. Essas seis dimensões extras estariam enroladas sobre si mesmas, com distâncias menores que o comprimento de Planck, e, portanto, não poderiam ser observadas ou notadas como as outras quatro dimensões.

No mundo quântico é necessário que as cordas vibrem de maneira quantizada, em quantidades discretas. Cada quantum de vibração aparece como uma partícula distinta com massa e spin distintos. Portanto, como há infinitas formas das cordas vibrando, existem infinitas partículas elementares.
No modelo padrão de partículas as forças da natureza são explicadas em virtude de uma partícula fundamental, que seria responsável para que o fenômeno acontecesse, no eletromagnetismo é o fóton, na força fraca o bóson e na força forte os glúons. Assim a força gravitacional também possuiria sua partícula fundamental, e a teoria das cordas prediz a existência dela, o Gráviton. Grávitons seriam cordas fechadas, em estado vibracional de baixa energia, responsáveis pela transmissão da força gravitacional. O fato de ele ser uma corda fechada sem pontas faz com que eles não sejam limitados pelas branas (ou membranas, que estão imersas no universo em dez dimensões) se movendo livremente entre elas, pois apenas a gravidade poderia “viajar” por todo o espaço, e seria a única a trazer evidências comprovando essas dimensões extras e também poderia explicar porque a gravidade é uma força tão fraca. O gráviton ainda é uma hipótese, pois até hoje, não foi possível comprovar sua existência e talvez ainda leve muitos anos para que possa ser detectado.

Gravitação quântica de Loops

Como a teoria das cordas, a teoria da Gravitação Quântica de Loops surge na esperança de reconciliar a Mecânica Quântica e a teoria da Relatividade Geral. De forma geral essa teoria tem como objetivo estabelecer uma teoria quântica onde tudo em volta da gravidade é quantizado com exceção da própria gravidade. Nessa teoria os estados quânticos estão relacionados a nós e linhas chamadas redes de spins. Essas redes de spins correspondem a um volume fundamental e uma área fundamental, ambos dependendo da constante de Planck. Elas representam o estado quântico de espaço que dão a origem a configuração granular do espaço-tempo. E o espaço-tempo estaria relacionado com as chamadas espumas de spins. Pode-se considerar então que o espaço é uma fina rede de loops finitos para que o espaço-tempo seja desconstruído.

Gravitação quântica de loops aparece então quantificando o espaço: “ele é descrito como uma treliça tridimensional, na qual os vértices de cada cubo são os pontos que podem ser ocupados e as arestas valem um métron [um métron é igual a 1035 m]. Se o espaço é mesmo quantizado e a menor distância entre dois pontos é um métron, então a gravidade nunca será infinita, pois a distância nunca será zero!” (CHERMAN e MENDONÇA, 2010) o que resolveria o problema dos infinitos da quantização da gravidade.

Assim, essa teoria surge como uma alternativa para a teoria das cordas, porém ela só pode ser usada para descrever a força gravitacional, enquanto a teoria de cordas também descreve as outras forças.
A Teoria de Gravidade de Loops ainda se encontra em desenvolvimento e na ciência atual possui algumas aplicações práticas, como descrever a entropia e termodinâmica dos buracos negros e cálculos envolvendo o Big Bang.

Conclusão

Ao longo do texto foram apresentadas três teorias distintas que tentam explicar a origem da força gravitacional, e a pergunta natural a se fazer é “Qual teoria é a mais correta para explicar a Gravitação Quântica?” ou “Qual teoria é mais aceita na comunidade científica para explicar a Gravitação Quântica?” é natural pensar que existe uma resposta certa para essa pergunta, porém não existe. Deve-se se levar em consideração que o que foi apresentado no texto são teorias, uma forma que os cientistas descobriram para tentar explicar aquilo que não se conhece, é claro que essas teorias se estruturam em toda uma base Física já construídas outrora e que nada foi criada ao acaso.

As teorias apresentadas são apenas duas de muitas outras, que tentam explicar por que a força gravitacional age da forma que age. De certa forma, uma pode ser considerada o complemento da outra, ou seja, inicialmente surgiu a teoria das cordas, mas ela possuía alguns problemas que não puderam ser resolvidos. Então surge a teoria quântica de loops para corrigir os problemas da teoria anterior, porém ao ser estudada, ela também apresentou problemas que deveriam ser respondidos, surgindo outras teorias para explicar e assim sucessivamente. Não existe a mais correta, ou a mais aceita, existe aquela que os cientistas, cada qual na sua área de pesquisa, estudam. Eles fazem experiências, cálculos e acreditam nelas tentando no final descobrir a resposta correta ou mais correta.

A teoria da unificação surge do pensamento que a natureza deve ter uma teoria universal que a explique como um todo, sem erros e especulações e levando em consideração que três das forças fundamentais da natureza são explicadas através da Física Quântica, nada mais justo acreditar que a força gravitacional, a mais antiga força conhecida, também poderia ser explicada da mesma forma. Mas o que foi visto é que existem mais dúvidas do que certezas de como ela funcionaria segundo a quântica. Até hoje não se sabe ao certo o que é gravitação quântica e como descrevê-la. Muitas teorias surgem para tentar explicá-la e ainda vão surgir inúmeras outras, até que se resolva o problema da quantização da gravidade. Para a pergunta feita no título do texto “O que é gravitação quântica?” a resposta ainda está um pouco longe de ser encontrada, essa questão ainda está em aberto. Quem sabe daqui a alguns anos essa pergunta seja respondida ou ainda que alguma dessas teorias realmente esteja correta.



Refs:
CHERMAN e MENDONÇA, "Por que as coisas caem?: Uma história da gravidade", Ed. Zahar, 2010
ABDALLA, "Teoria quântica da gravitação: cordas e teoria M", Rev. Bras. Ensino Fís. vol.27 no.1, 2005

{ 9 comentários ... Abandone toda a esperança aquele que aqui entrar }

  1. Bem, a forma como foi colocada as duas teorias foi bem didático. As duas teorias sao myito cimplexas matematicanebte, embora conceituslmente mais simples e interessante. Se for considerar minhs opunião a respeito de pessoas leigas postarem algo sobre teoriss cientificas, deve existir um grande cuidado com isso. Eu sou formado en mstematica e fisica, mas nao siy especialista em teoruas de campo. Nao me atreveria a enviar um artigo científico sobre o assunto para alguma revista D extrema importanxia, mas eu me atreveria a fazer alguns ensaios para alguns sites ou revistas de divulgaçao. Mas se for considerar construçap cientifica sobre o assunto, eu teria que escolher um ponto de estudo. Por exemplo, eu poderia pesquisar se a gravidade em loop e teoru das cordas descreveriam a geavidade de maneira eficiente sem uma depender da outra e se isso não acontece, entao será que essas teoruas são alternativas para unificaçao? Acredito que uma teoria para unificação nao deve apresentar buracos conceituais e no caso das duas teorias de gravidade, temos problenas, mas acredito mais em teoria das cordas do que ss teorias de gravidade quantica em loop. A primeira é mais elegante, na minha visão. Em fim, outra coisa q eu gostaria de salientar é que a uniificaçao, se existir, não significa que a física perderá seu facínio. Sempre existirão coisas novas a descobrir, teorias novas irao existir e desafiarão a humanidade. A teoria das cordas mesmo prevê uma enorme quantidade de Universos, cada um com suas proprias Leis fisicas. É coaro que isso é um problema sério para os fisucos. Inclusive esse é um priblema que desencoraja as pesquisas naárea da teoria das cirdas, mas so mru ver, pode ser apenas uma verdade prevista pela teoria. Daquelas, tipo "princípio da incerteza" . Imagibo que os ciebtistas e um deles fou o próprio Einstein, nao se conformoy com a nao localudade e a imprevisibilidade da MQ. Isso hoje acontece com a teoria das cirdas ao prever leis difetentes oara Universos diferentes. Mas vamos considetarr que não haverá fisicos desempregados. Espero que não existam fisicos que cometa o mesmo erro de Kelvin, nao vamos desencorajar jamais a humanidade patar de estudar fisica. Isso seria um tiro no pé para a evoluçao cientica e tecnológica da humanidade.

    ResponderExcluir
  2. Todos os modelos da gravitação quântica sugerem um Universo eterno ?

    ResponderExcluir
    Respostas
    1. O Jumar. Não. Cordas por exemplo oferece diversas opções, eternos e não-eternos. Já a grav em loops parece prever um tipo de "cosmologia quicante", em que o universo se contrai e expande novamente, mas pelo pouco que sei sobre o assunto muito pouco foi explorado ainda nessas questões.

      Excluir
    2. Entendi Daniel, mais muitos modelos que cheguei ver, um deles foi o modelo do Steinhardt e Turok, que aponta para um Universo cíclico, ou essa ''cosmologia quicante" que citou, que no caso deste modelo o espaço-tempo não teria começado a existir a partir de um momento determinado (o Big Bang) mas existia antes disto, sendo eterno e passando por ciclos infinitos de expansão, interrupção da expansão e uma nova explosão e assim sucessivamente, porem eu nunca fui favorável a um Universo eterno, é uma área em grande parte especulativa, eu sempre fui favorável a teoria inflacionaria.

      Excluir
  3. Só uma pequena correção: o texto fala que a partícula mediadora da interação fraca seria "o boson", quando na verdade todas as partículas mediadoras sao bosons. O texto certamente se refere aos bosons Z e W.

    ResponderExcluir
  4. Com a detecção das ondas gravitacionais qual impacto nessas teorias?

    ResponderExcluir
    Respostas
    1. Ondas gravitacionais são fenômenos clássicos por excelência, então não teria um grande impacto em Quântica. Mas em Relatividade Geral significa mais uma predição confirmada da teoria.

      Excluir
  5. Não sei se intempestivo, mas com o intuito de colaborar estou postanto uma alternativa (fractal) à abordagem da gravidade quântica... https://questcosmic.wordpress.com/2012/03/12/universo-um-processo-fractal-autorganizado/

    ResponderExcluir

Seguidores

Posts populares

Labels

- Copyright © Simetria de Gauge - Powered by Buc! - His name is Robert Paulson - Use $\LaTeX$